卷二十八 (1/2)
三四小说网 www.34txt.com,宋史无错无删减全文免费阅读!
律历八
明天历
步晷漏术
二至限:一百八十一日六十二分。
一象度:九十一度三十一分。
消息法:一万六百八十九。
辰法:三千二百五十。
刻法:三百九十。
半辰法:一千六百二十五。
昏明刻分:九百七十五。
昏明:二刻一百九十五分。
冬至岳台晷景常数:一丈二尺八寸五分。
夏至岳台晷景常数:一尺五寸七分。
冬至后初限、夏至后末限:四十五日六十二分。
夏至后初限、冬至后末限:一百三十七日。
求岳台晷景入二至后日数:计入二至后来日数,以二至约余减之,仍加半日之分,即为入二至后来日午中积数及分。
求岳台晷景午中定数:置所求午中积数,如初限以下者为在初;已上者,覆减二至限,余为在末。其在冬至后初限、夏至后末限者,以入限日减一千九百三十七半,为泛差;仍以入限日分乘其日盈缩积,(盈缩积在日度术中。)五因百约之,用减泛差,为定差;乃以入限日分自相乘,以乘定差,满一百万为尺,不满为寸、为分及小分,以减冬至常晷,余为其日午中晷景定数。若所求入冬至后末限、夏至后初限者,乃三约入限日分,以减四百八十五少,余为泛差;仍以盈缩差减极数,余者若在春分后、秋分前者,直以四约之,以加泛差,为定差;若春分前、秋分后者,以去二分日数及分乘之,满六百而一,以减泛差,余为定差;乃以入限日分自相乘,以乘定差,满一百万为尺,不满为寸、为分及小分,以加夏至常晷,即为其日午中晷景定数。
求每日消息定数:置所求日中日度分,如在二至限以下者为在息;以上者去之,余为在消。又视入消息度加一象以下者为在初;以上者,覆减二至限,余为在末。其初、末度自相乘,以一万乘而再折之,满消息法除之,为常数。乃副之,用减一千九百五十,余以乘其副,满八千六百五十除之,所得以加常数,为所求消息定数。
求每日黄道去极度及赤道内外度:置其日消息定数,以四因之,满三百二十五除之为度,不满,退除为分,所得,在春分后加六十七度三十一分,在秋分后减一百一十五度三十一分,即为所求日黄道去极度及分。以黄道去极度与一象度相减,余为赤道内、外度。若去极度少,为日在赤道内;若去极度多,为日在赤道外。
求每日晨昏分及日出入分:以其日消息定数,春分后加六千八百二十五,秋分后减一万七百二十五,余为所求日晨分;用减元法,余为昏分。以昏明分加晨分,为日出分;减昏分,为日入分。
求每日距中距子度及每更差度:置其日晨分,以七百乘之,满七万四千七百四十二除为度,不满,退除为分,命曰距子度;用减半周天,余为距中度。(若倍距子度,五除之,即为每更差度及分。若依司辰星漏历,则倍距子度,减去待旦三十六度五十二分半,余以五约之,即每更差度。)
求每日夜半定漏:置其日晨分,以刻法除之为刻,不满为分,即所求日夜半定漏。
求每日昼夜刻及日出入辰刻:倍夜半定漏,加五刻,为夜刻。用减一百刻,余为昼刻。以昏明刻加夜半定漏,满辰法除之为辰数,不满,刻法除之为刻,又不满,为刻分。命辰数从子正,算外,即日出辰刻;以昼刻加之,命如前,即日入辰刻。(若以半辰刻加之,即命从辰初也。)
求更点辰刻:倍夜半定漏,二十五而一,为点差刻;五因之,为更差刻。以昏明刻加日入辰刻,即甲夜辰刻;以更点差刻累加之,满辰刻及分去之,各得更点所入辰刻及分。(若同司辰星漏历者,倍夜半定漏,减去待旦一十刻,余依术求之,即同内中更点。)
求昏晓及五更中星:置距中度,以其日昏后夜半赤道日度加而命之,即其日昏中星所格宿次,其昏中星便为初更中星;以每更差度加而命之,即乙夜所格中星;累加之,得逐更中星所格宿次。又倍距子度,加昏中星命之,即晓中星所格宿次。(若同司辰星漏历中星,则倍距子度,减去待旦十刻之度三十六度五十二分半,余约之为五更,即同内中更点中星。)
求九服距差日:各于所在立表候之,若地在岳台北,测冬至后与岳台冬至晷景同者,累冬至后至其日,为距差日;若地在岳台南,测夏至后与岳台晷景同者,累夏至后至其日,为距差日。
求九服晷景:若地在岳台北冬至前后者,以冬至前后日数减距差日,为余日;以余日减一千九百三十七半,为泛差;依前术求之,以加岳台冬至晷景常数,为其地其日中晷常数。若冬至前后日多于距差日,乃减去距差日,余依前术求之,即得其地其日中晷常数。若地在岳台南夏至前后者,以夏至前后日数减距差日,为余日;乃三约之,以减四百八十五少,为泛差;依前术求之,以减岳台夏至晷景常数,即其地其日中晷常数。如夏至前后日数多于距差日,乃减岳台夏至常晷,余即晷在表南也。若夏至前后日多于距差日,即减去距差日,余依前术求之,各得其地其日中晷常数。(若求定数,依立成以求午中晷景定数。)
求九服所在昼夜漏刻:冬、夏二至各于所在下水漏,以定其地二至夜刻,乃相减,余为冬、夏至差刻。置岳台其日消息定数,以其地二至差刻乘之,如岳台二至差刻二十而一,所得,为其地其日消息定数。乃倍消息定数,满刻法约之为刻,不满为分,乃加减其地二至夜刻,(秋分后、春分前,减冬至夜刻;春分后、秋分前,加夏至夜刻。)为其地其日夜刻;用减一百刻,余为昼刻。(其日出入辰刻及距中度五更中星,并依前术求之。)
步月离术
转度母:八千一百一十二万。
转终分:二百九十八亿八千二百二十四万二千二百五十一。
朔差:二十一亿四千二百八十八万七千。
朔差:二十六度。(余三千三百七十六万七千,约余四千一百六十二半。)
转法:一十亿八千四百四十七万三千。
会周:三百二十亿二千五百一十二万九千二百五十一。
转终:三百六十八度。(余三十八万二千二百五十一,约余三千七百八。)
转终:二十七日。(余六亿一百四十七万一千二百五十一,约余五千五百四十六。)
中度:一百八十四度。(余一千五百四万一千一百二十五半,约余一千八百五十四。)
象度:九十二度。(余七百五十二万五百六十二太,约分九百二十七。)
月平行:十三度。(余二千九百九十一万三千,约分三千六百八十七半。)
望差:一百九十七度。(余三千一百九十二万四千六百二十五半,约分三千九百三十四。)
弦差:九十八度。(余五千六百五十二万二千三百一十二太,约分六千九百六十七。)
日衰:一十八、小分九。
求月行入转度:以朔差乘所求积月,满转终分去之,不尽为转余。满转度母除为度,不满为余,(其余若以一万乘之,满转度母除之,即得约分;若以转法除转余,即为入转日及余。)即得所求月加时入转度及余。(若以弦度及余累加之,即得上弦、望、下弦及后朔加时入转度及分;其度若满转终度及余去之。)其入转度如在中度以下为月行在疾历;如在中度以上者,乃减去中度及余,为月入迟历。
求月行迟疾差度及定差:置所求月行入迟速度,如在象度以下为在初。以上,覆减中度,余为在末。(其度余用约分百为母。)置初、末度于上,列二百一度九分于下,以上减下,余以下乘上,为积数;满一千九百七十六除为度,不满,退除为分,命曰迟疾差度。(在疾为减,在迟为加。)以一万乘积数,满六千七百七十三半除之,为迟疾定差。(疾加、迟减,若用立成者,以其度下损益率乘度余,满转度母而一,所得,随其损益,即得迟疾及定差。其迟疾、初末损益分为二日者,各加其初、末以乘除。)
求朔弦望所直度下月行定分:置迟疾所入初、末度分,进一位,满七百三十九除之,用减一百二十七,余为衰差。乃以衰差疾初迟末减、迟初疾末加,皆加减平行度分,为其度所直月行定分。(其度以百命为分。)
求朔弦望定日:各以日躔盈缩、月行迟疾定差加减经朔、弦、望小余,满若不足,进退大余,命甲子,算外,各得定日日辰及余。若定朔干名与后朔干名同者月大,不同月小,月内无中气者为闰月。(凡注历,观定朔小余,秋分后四分之三已上者,进一日;若春分后,其定朔晨分差如春分之日者,三约之,以减四分之三;如定朔小余及此数已上者,进一日;朔或当交有食,初亏在日入已前者,其朔不进。弦、望定小余不满日出分者,退一日;其望或当交有食,初亏在日出已前,其定望小余虽满日出分者,亦退之。又月行九道迟疾,历有三大二小;日行盈缩累增损之,则有四大三小,理数然也。若循其常,则当察加时早晚,随其所近而进退之,使月之大小不过连三。旧说,正月朔有交,必须消息前后一两月,移食在晦、二之日。且日食当朔,月食当望,盖自然之理。夫日之食,盖天之垂诫,警悟时政,若道化得中,则变咎为祥。国家务以至公理天下,不可私移晦朔,宜顺天诫。故春秋传书日食,乃纠正其朔,不可专移食于晦、二。其正月朔有交,一从近典,不可移避。)
求定朔弦望加时日度:置朔、弦、望中日及约分,以日躔盈缩度及分盈加缩减之,又以元法退除迟疾定差,疾加迟减之,余为其朔、弦、望加时定日。以天正冬至加时黄道日度加而命之,即所求朔、弦、望加时定日所在宿次。(朔、望有交,则依后术。)
求月行九道:凡合朔所交,冬在阴历,夏在阳历,月行青道。(冬至、夏至后,青道半交在春分之宿,当黄道东。立夏、立冬后,青道半交在立春之宿,当黄道东南;至所冲之宿亦如之。)冬在阳历,夏在阴历,月行白道。(冬至、夏至后,白道半交在秋分之宿,当黄道西;立冬、立夏后,白道半交在立秋之宿,当黄道西北;至所冲之宿亦如之。)春在阳历,秋在阴历,月行朱道。(春分、秋分后,朱道交在夏至之宿,当黄道南;立春、立秋后,朱道半交在立夏之宿,当黄道西南:至所冲之宿亦如之。)春在阴历,秋在阳历,月行黑道。(春分、秋分后,黑道半交在冬至之宿,当黄道正北。立春、立秋后,黑道半交在立冬之宿,当黄道东北;至所冲之宿亦如之。)四序离为八节,至阴阳之所交,皆与黄道相会,故月行九道。各视月所入正交积度,(视正交九道宿度所入节候,即其道、其节所起。)满象度及分去之余,(入交积度及象度并在交会术中。)若在半象以下为在初限。以上,覆减象度及分,为在末限。用减一百一十一度三十七分,余以所入初、末限度及分乘之,退位,半之,满百为度,不满为分,所得为月行与黄道差数。距半交后、正交前,以差数减;距正交后、半交前,以差数加。(此加减出入六度,单与黄道相较之数,若较之赤道,随数迁变不常。)计去二至以来度数,乘黄道所差,九十而一,为月行与黄道差数。凡日以赤道内为阴,外为阳;月以黄道内为阴,外为阳。故月行宿度,入春分交后行阴历,秋分交后行阳历,皆为同名;若入春分交后行阳历,秋分交后行阴历,皆为异名。其在同名,以差数加者加之,减者减之;其在异名,以差数加者减之,减者加之。皆加减黄道宿积度,为九道宿积度;以前宿九道宿积度减其宿九道宿积度,余为其宿九道宿度及分。(其分就近约为太、半、少三数。)
求月行九道入交度:置其朔加时定日度,以其朔交初度及分减之,余为其朔加时月行入交度及余。(其余以一万乘之,以元法退除之,即为约余。)以天正冬至加时黄道日度加而命之,即正交月离所在黄道宿度。
求正交加时月离九道宿度:以正交度及分减一百一十一度三十七分,余以正交度及分乘之,退一等,半之,满百为度,不满为分,所得,命曰定差。以定差加黄道宿度,计去冬、夏至以来度数,乘定差,九十而一,所得,依同异名加减之,满若不足,进退其度,命如前,即正交加时月离九道宿度及分。
求定朔弦望加时月离所在宿度:各置其日加时日躔所在,变从九道,循次相加。凡合朔加时,月行潜在日下,与太阳同度,是为加时月离宿次。(先置朔、弦、望加时黄道宿度,以正交加时黄道宿度减之,余以加其正交加时九道宿度,命起正交宿次,算外,即朔、弦、望加时所当九道宿度。其合朔加时若非正近,则日在黄道、月在九道各入宿度,虽多少不同,考其去极,若应绳准。故云月行潜在日下,与太阳同度。)各以弦、望度及分加其所当九道宿度,满宿次去之,各得加时九道月离宿次。
求定朔夜半入转:以所求经朔小余减其朔加时入转日余,(其经朔小余,以二万七千八百七乘之,即母转法。)为其经朔夜半入转。若定朔大余有进退者,亦进退转日,无进退则因经为定。(其余以转法退收之,即为约分。)
求次月定朔夜半入转:因定朔夜半入转,大月加二日,小月加一日,余、分皆加四千四百五十四,满转终日及约分去之,即次月定朔夜半入转;累加一日,去命如前,各得逐日夜半入转日及分。
求定朔弦望夜半月度:各置加时小余,(若非朔、望有交者,有用定朔、弦、望小余。)以其日月行定分乘之,满元法而一为度,不满,退除为分,命曰加时度。以减其日加时月度,即各得所求夜半月度。
求晨昏月:以晨分乘其日月行定分,元法而一,为晨度;用减月行定分,余为昏度。各以晨昏度加夜半月度,即所求晨昏月所在宿度。
求朔弦望晨昏定程:各以其朔昏定月减上弦昏定月,余为朔后昏定程;以上弦昏定月减望昏定月,余为上弦后昏定程;以望晨定月减下弦晨定月,余为望后晨定程;以下弦晨定月减次朔晨定月,余为下弦后晨定程。
求转积度:计四七日月行定分,以日衰加减之,为逐日月行定程;乃自所入日计求定之,为其程转积度分。(其四七日月行定分者,初日益迟一千二百一十,七日渐疾一千三百四十一,十四日损疾一千四百六十一,二十一日渐迟一千三百二十八,乃观其迟疾之极差而损益之,以百为分母。)
求每日晨昏月:以转积度与晨昏定程相减,余以距后程日数除之,为日差。(定程多为加,定程少为减。)以加减每日月行定分,为每日转定度及分。以每日转定度及分加朔、弦、望晨昏月,满九道宿次去之,即为每日晨、昏月离所在宿度及分。(凡注历,朔后注昏,望后注晨。)已前月度,并依九道所推,以究算术之精微。若注历求其速要者,即依后术以推黄道月度。
求天正十一月定朔夜半平行月:以天正经朔小余乘平行度分,元法而一为度,不满,退除为分秒,所得,为经朔加时度。用减其朔中日,即经朔晨前夜半平行月积度。(若定朔有进退,以平行度分加减之。)即为天正十一月定朔之日晨前夜半平行月积度及分。
求次月定朔之日夜半平行月:置天正定朔之日夜半平行月,大月加三十五度八十分六十一秒,小月加二十二度四十三分七十三秒半,满周天度分即去之,即每月定朔之晨前夜半平行月积度及分秒。
求定弦望夜半平行月、计弦、望距定朔日数,以乘平行度及分秒,以加其定朔夜半平行月积度及分秒,即定弦、望之日夜半平行月积度及分秒。(亦可直求朔望,不复求度,从简易也。)
求天正定朔夜半入转度:置天正经朔小余,以平行月度及分乘之,满元法除为度,不满,退除为分秒,命为加时度;以减天正十一月经朔加时入转度及约分,余为天正十一月经朔夜半入转度及分。若定朔大余有进退者,亦进退平行度分,即为天正十一月定朔之日晨前夜半入转度及分秒。
求次月定朔及弦望夜半入转度:因天正十一月定朔夜半入转度分,大月加三十二度六十九分一十七秒,小月加十九度三十二分二十九秒半,即各得次月定朔夜半入转度及分。各以朔、弦、望相距日数乘平行度分以加之,满转终度及秒即去之,如在中度以下者为在疾;以上者去之,余为入迟历,即各得次朔、弦、望定日晨前夜半入转度及分。(若以平行月度及分收之,即为定朔、弦、望入转日。)
求定朔弦望夜半定月:以定朔、弦、望夜半入转度分乘其度损益衰,以一万约之为分,百约之为秒,损益其度下迟疾度,为迟疾定度。乃以迟加疾减夜半平行月,为朔、弦、望夜半定月积度。以冬至加时黄道日度加而命之,即定朔、弦、望夜半月离所在宿次。(若有求晨昏月,以其日晨昏分乘其日月行定分,元法而一,所得为晨昏度;以加其夜半定月,即得朔、弦、望晨昏月度。)
求朔弦望定程:各以朔、弦、望定月相减,余为定程。(若求晨昏定程,则用晨昏定月相减,朔后用昏,望后用晨。)
求朔弦望转积度分:计四七日月行定分,以日衰加减之,为逐日月行定分;乃自所入日计之,为其程转积度分。(其四七日月行定分者,初日益迟一千二百一十,七日渐疾一千三百四十一,十四日损疾一千四百六十一,二十一日渐迟一千三百二十八,乃视其迟疾之极差而损益之,分以百为母。)
求每日月离宿次:各以其朔、弦、望定程与转积度相减,余为程差。以距后程日数除之,为日差。(定程多为益差,定程少为损差。)以日差加减月行定分。为每日月行定分;以每日月行定分累加定朔、弦、望夜半月在宿次,命之,即每日晨前夜半月离宿次。(如晨昏宿次,即得每日晨昏月度。)
步交会术
交度母:六百二十四万。
周天分:二十二亿七千九百二十万四百四十七。
朔差:九百九十万一千一百五十九。
朔差:一度、余三百六十六万一千一百五十九。
望差:空度、余四百九十五万五百七十九半。
半周天:一百八十二度。(余三百九十二万二百二十三半,约分六千二百八十二。)
 ... -->>
律历八
明天历
步晷漏术
二至限:一百八十一日六十二分。
一象度:九十一度三十一分。
消息法:一万六百八十九。
辰法:三千二百五十。
刻法:三百九十。
半辰法:一千六百二十五。
昏明刻分:九百七十五。
昏明:二刻一百九十五分。
冬至岳台晷景常数:一丈二尺八寸五分。
夏至岳台晷景常数:一尺五寸七分。
冬至后初限、夏至后末限:四十五日六十二分。
夏至后初限、冬至后末限:一百三十七日。
求岳台晷景入二至后日数:计入二至后来日数,以二至约余减之,仍加半日之分,即为入二至后来日午中积数及分。
求岳台晷景午中定数:置所求午中积数,如初限以下者为在初;已上者,覆减二至限,余为在末。其在冬至后初限、夏至后末限者,以入限日减一千九百三十七半,为泛差;仍以入限日分乘其日盈缩积,(盈缩积在日度术中。)五因百约之,用减泛差,为定差;乃以入限日分自相乘,以乘定差,满一百万为尺,不满为寸、为分及小分,以减冬至常晷,余为其日午中晷景定数。若所求入冬至后末限、夏至后初限者,乃三约入限日分,以减四百八十五少,余为泛差;仍以盈缩差减极数,余者若在春分后、秋分前者,直以四约之,以加泛差,为定差;若春分前、秋分后者,以去二分日数及分乘之,满六百而一,以减泛差,余为定差;乃以入限日分自相乘,以乘定差,满一百万为尺,不满为寸、为分及小分,以加夏至常晷,即为其日午中晷景定数。
求每日消息定数:置所求日中日度分,如在二至限以下者为在息;以上者去之,余为在消。又视入消息度加一象以下者为在初;以上者,覆减二至限,余为在末。其初、末度自相乘,以一万乘而再折之,满消息法除之,为常数。乃副之,用减一千九百五十,余以乘其副,满八千六百五十除之,所得以加常数,为所求消息定数。
求每日黄道去极度及赤道内外度:置其日消息定数,以四因之,满三百二十五除之为度,不满,退除为分,所得,在春分后加六十七度三十一分,在秋分后减一百一十五度三十一分,即为所求日黄道去极度及分。以黄道去极度与一象度相减,余为赤道内、外度。若去极度少,为日在赤道内;若去极度多,为日在赤道外。
求每日晨昏分及日出入分:以其日消息定数,春分后加六千八百二十五,秋分后减一万七百二十五,余为所求日晨分;用减元法,余为昏分。以昏明分加晨分,为日出分;减昏分,为日入分。
求每日距中距子度及每更差度:置其日晨分,以七百乘之,满七万四千七百四十二除为度,不满,退除为分,命曰距子度;用减半周天,余为距中度。(若倍距子度,五除之,即为每更差度及分。若依司辰星漏历,则倍距子度,减去待旦三十六度五十二分半,余以五约之,即每更差度。)
求每日夜半定漏:置其日晨分,以刻法除之为刻,不满为分,即所求日夜半定漏。
求每日昼夜刻及日出入辰刻:倍夜半定漏,加五刻,为夜刻。用减一百刻,余为昼刻。以昏明刻加夜半定漏,满辰法除之为辰数,不满,刻法除之为刻,又不满,为刻分。命辰数从子正,算外,即日出辰刻;以昼刻加之,命如前,即日入辰刻。(若以半辰刻加之,即命从辰初也。)
求更点辰刻:倍夜半定漏,二十五而一,为点差刻;五因之,为更差刻。以昏明刻加日入辰刻,即甲夜辰刻;以更点差刻累加之,满辰刻及分去之,各得更点所入辰刻及分。(若同司辰星漏历者,倍夜半定漏,减去待旦一十刻,余依术求之,即同内中更点。)
求昏晓及五更中星:置距中度,以其日昏后夜半赤道日度加而命之,即其日昏中星所格宿次,其昏中星便为初更中星;以每更差度加而命之,即乙夜所格中星;累加之,得逐更中星所格宿次。又倍距子度,加昏中星命之,即晓中星所格宿次。(若同司辰星漏历中星,则倍距子度,减去待旦十刻之度三十六度五十二分半,余约之为五更,即同内中更点中星。)
求九服距差日:各于所在立表候之,若地在岳台北,测冬至后与岳台冬至晷景同者,累冬至后至其日,为距差日;若地在岳台南,测夏至后与岳台晷景同者,累夏至后至其日,为距差日。
求九服晷景:若地在岳台北冬至前后者,以冬至前后日数减距差日,为余日;以余日减一千九百三十七半,为泛差;依前术求之,以加岳台冬至晷景常数,为其地其日中晷常数。若冬至前后日多于距差日,乃减去距差日,余依前术求之,即得其地其日中晷常数。若地在岳台南夏至前后者,以夏至前后日数减距差日,为余日;乃三约之,以减四百八十五少,为泛差;依前术求之,以减岳台夏至晷景常数,即其地其日中晷常数。如夏至前后日数多于距差日,乃减岳台夏至常晷,余即晷在表南也。若夏至前后日多于距差日,即减去距差日,余依前术求之,各得其地其日中晷常数。(若求定数,依立成以求午中晷景定数。)
求九服所在昼夜漏刻:冬、夏二至各于所在下水漏,以定其地二至夜刻,乃相减,余为冬、夏至差刻。置岳台其日消息定数,以其地二至差刻乘之,如岳台二至差刻二十而一,所得,为其地其日消息定数。乃倍消息定数,满刻法约之为刻,不满为分,乃加减其地二至夜刻,(秋分后、春分前,减冬至夜刻;春分后、秋分前,加夏至夜刻。)为其地其日夜刻;用减一百刻,余为昼刻。(其日出入辰刻及距中度五更中星,并依前术求之。)
步月离术
转度母:八千一百一十二万。
转终分:二百九十八亿八千二百二十四万二千二百五十一。
朔差:二十一亿四千二百八十八万七千。
朔差:二十六度。(余三千三百七十六万七千,约余四千一百六十二半。)
转法:一十亿八千四百四十七万三千。
会周:三百二十亿二千五百一十二万九千二百五十一。
转终:三百六十八度。(余三十八万二千二百五十一,约余三千七百八。)
转终:二十七日。(余六亿一百四十七万一千二百五十一,约余五千五百四十六。)
中度:一百八十四度。(余一千五百四万一千一百二十五半,约余一千八百五十四。)
象度:九十二度。(余七百五十二万五百六十二太,约分九百二十七。)
月平行:十三度。(余二千九百九十一万三千,约分三千六百八十七半。)
望差:一百九十七度。(余三千一百九十二万四千六百二十五半,约分三千九百三十四。)
弦差:九十八度。(余五千六百五十二万二千三百一十二太,约分六千九百六十七。)
日衰:一十八、小分九。
求月行入转度:以朔差乘所求积月,满转终分去之,不尽为转余。满转度母除为度,不满为余,(其余若以一万乘之,满转度母除之,即得约分;若以转法除转余,即为入转日及余。)即得所求月加时入转度及余。(若以弦度及余累加之,即得上弦、望、下弦及后朔加时入转度及分;其度若满转终度及余去之。)其入转度如在中度以下为月行在疾历;如在中度以上者,乃减去中度及余,为月入迟历。
求月行迟疾差度及定差:置所求月行入迟速度,如在象度以下为在初。以上,覆减中度,余为在末。(其度余用约分百为母。)置初、末度于上,列二百一度九分于下,以上减下,余以下乘上,为积数;满一千九百七十六除为度,不满,退除为分,命曰迟疾差度。(在疾为减,在迟为加。)以一万乘积数,满六千七百七十三半除之,为迟疾定差。(疾加、迟减,若用立成者,以其度下损益率乘度余,满转度母而一,所得,随其损益,即得迟疾及定差。其迟疾、初末损益分为二日者,各加其初、末以乘除。)
求朔弦望所直度下月行定分:置迟疾所入初、末度分,进一位,满七百三十九除之,用减一百二十七,余为衰差。乃以衰差疾初迟末减、迟初疾末加,皆加减平行度分,为其度所直月行定分。(其度以百命为分。)
求朔弦望定日:各以日躔盈缩、月行迟疾定差加减经朔、弦、望小余,满若不足,进退大余,命甲子,算外,各得定日日辰及余。若定朔干名与后朔干名同者月大,不同月小,月内无中气者为闰月。(凡注历,观定朔小余,秋分后四分之三已上者,进一日;若春分后,其定朔晨分差如春分之日者,三约之,以减四分之三;如定朔小余及此数已上者,进一日;朔或当交有食,初亏在日入已前者,其朔不进。弦、望定小余不满日出分者,退一日;其望或当交有食,初亏在日出已前,其定望小余虽满日出分者,亦退之。又月行九道迟疾,历有三大二小;日行盈缩累增损之,则有四大三小,理数然也。若循其常,则当察加时早晚,随其所近而进退之,使月之大小不过连三。旧说,正月朔有交,必须消息前后一两月,移食在晦、二之日。且日食当朔,月食当望,盖自然之理。夫日之食,盖天之垂诫,警悟时政,若道化得中,则变咎为祥。国家务以至公理天下,不可私移晦朔,宜顺天诫。故春秋传书日食,乃纠正其朔,不可专移食于晦、二。其正月朔有交,一从近典,不可移避。)
求定朔弦望加时日度:置朔、弦、望中日及约分,以日躔盈缩度及分盈加缩减之,又以元法退除迟疾定差,疾加迟减之,余为其朔、弦、望加时定日。以天正冬至加时黄道日度加而命之,即所求朔、弦、望加时定日所在宿次。(朔、望有交,则依后术。)
求月行九道:凡合朔所交,冬在阴历,夏在阳历,月行青道。(冬至、夏至后,青道半交在春分之宿,当黄道东。立夏、立冬后,青道半交在立春之宿,当黄道东南;至所冲之宿亦如之。)冬在阳历,夏在阴历,月行白道。(冬至、夏至后,白道半交在秋分之宿,当黄道西;立冬、立夏后,白道半交在立秋之宿,当黄道西北;至所冲之宿亦如之。)春在阳历,秋在阴历,月行朱道。(春分、秋分后,朱道交在夏至之宿,当黄道南;立春、立秋后,朱道半交在立夏之宿,当黄道西南:至所冲之宿亦如之。)春在阴历,秋在阳历,月行黑道。(春分、秋分后,黑道半交在冬至之宿,当黄道正北。立春、立秋后,黑道半交在立冬之宿,当黄道东北;至所冲之宿亦如之。)四序离为八节,至阴阳之所交,皆与黄道相会,故月行九道。各视月所入正交积度,(视正交九道宿度所入节候,即其道、其节所起。)满象度及分去之余,(入交积度及象度并在交会术中。)若在半象以下为在初限。以上,覆减象度及分,为在末限。用减一百一十一度三十七分,余以所入初、末限度及分乘之,退位,半之,满百为度,不满为分,所得为月行与黄道差数。距半交后、正交前,以差数减;距正交后、半交前,以差数加。(此加减出入六度,单与黄道相较之数,若较之赤道,随数迁变不常。)计去二至以来度数,乘黄道所差,九十而一,为月行与黄道差数。凡日以赤道内为阴,外为阳;月以黄道内为阴,外为阳。故月行宿度,入春分交后行阴历,秋分交后行阳历,皆为同名;若入春分交后行阳历,秋分交后行阴历,皆为异名。其在同名,以差数加者加之,减者减之;其在异名,以差数加者减之,减者加之。皆加减黄道宿积度,为九道宿积度;以前宿九道宿积度减其宿九道宿积度,余为其宿九道宿度及分。(其分就近约为太、半、少三数。)
求月行九道入交度:置其朔加时定日度,以其朔交初度及分减之,余为其朔加时月行入交度及余。(其余以一万乘之,以元法退除之,即为约余。)以天正冬至加时黄道日度加而命之,即正交月离所在黄道宿度。
求正交加时月离九道宿度:以正交度及分减一百一十一度三十七分,余以正交度及分乘之,退一等,半之,满百为度,不满为分,所得,命曰定差。以定差加黄道宿度,计去冬、夏至以来度数,乘定差,九十而一,所得,依同异名加减之,满若不足,进退其度,命如前,即正交加时月离九道宿度及分。
求定朔弦望加时月离所在宿度:各置其日加时日躔所在,变从九道,循次相加。凡合朔加时,月行潜在日下,与太阳同度,是为加时月离宿次。(先置朔、弦、望加时黄道宿度,以正交加时黄道宿度减之,余以加其正交加时九道宿度,命起正交宿次,算外,即朔、弦、望加时所当九道宿度。其合朔加时若非正近,则日在黄道、月在九道各入宿度,虽多少不同,考其去极,若应绳准。故云月行潜在日下,与太阳同度。)各以弦、望度及分加其所当九道宿度,满宿次去之,各得加时九道月离宿次。
求定朔夜半入转:以所求经朔小余减其朔加时入转日余,(其经朔小余,以二万七千八百七乘之,即母转法。)为其经朔夜半入转。若定朔大余有进退者,亦进退转日,无进退则因经为定。(其余以转法退收之,即为约分。)
求次月定朔夜半入转:因定朔夜半入转,大月加二日,小月加一日,余、分皆加四千四百五十四,满转终日及约分去之,即次月定朔夜半入转;累加一日,去命如前,各得逐日夜半入转日及分。
求定朔弦望夜半月度:各置加时小余,(若非朔、望有交者,有用定朔、弦、望小余。)以其日月行定分乘之,满元法而一为度,不满,退除为分,命曰加时度。以减其日加时月度,即各得所求夜半月度。
求晨昏月:以晨分乘其日月行定分,元法而一,为晨度;用减月行定分,余为昏度。各以晨昏度加夜半月度,即所求晨昏月所在宿度。
求朔弦望晨昏定程:各以其朔昏定月减上弦昏定月,余为朔后昏定程;以上弦昏定月减望昏定月,余为上弦后昏定程;以望晨定月减下弦晨定月,余为望后晨定程;以下弦晨定月减次朔晨定月,余为下弦后晨定程。
求转积度:计四七日月行定分,以日衰加减之,为逐日月行定程;乃自所入日计求定之,为其程转积度分。(其四七日月行定分者,初日益迟一千二百一十,七日渐疾一千三百四十一,十四日损疾一千四百六十一,二十一日渐迟一千三百二十八,乃观其迟疾之极差而损益之,以百为分母。)
求每日晨昏月:以转积度与晨昏定程相减,余以距后程日数除之,为日差。(定程多为加,定程少为减。)以加减每日月行定分,为每日转定度及分。以每日转定度及分加朔、弦、望晨昏月,满九道宿次去之,即为每日晨、昏月离所在宿度及分。(凡注历,朔后注昏,望后注晨。)已前月度,并依九道所推,以究算术之精微。若注历求其速要者,即依后术以推黄道月度。
求天正十一月定朔夜半平行月:以天正经朔小余乘平行度分,元法而一为度,不满,退除为分秒,所得,为经朔加时度。用减其朔中日,即经朔晨前夜半平行月积度。(若定朔有进退,以平行度分加减之。)即为天正十一月定朔之日晨前夜半平行月积度及分。
求次月定朔之日夜半平行月:置天正定朔之日夜半平行月,大月加三十五度八十分六十一秒,小月加二十二度四十三分七十三秒半,满周天度分即去之,即每月定朔之晨前夜半平行月积度及分秒。
求定弦望夜半平行月、计弦、望距定朔日数,以乘平行度及分秒,以加其定朔夜半平行月积度及分秒,即定弦、望之日夜半平行月积度及分秒。(亦可直求朔望,不复求度,从简易也。)
求天正定朔夜半入转度:置天正经朔小余,以平行月度及分乘之,满元法除为度,不满,退除为分秒,命为加时度;以减天正十一月经朔加时入转度及约分,余为天正十一月经朔夜半入转度及分。若定朔大余有进退者,亦进退平行度分,即为天正十一月定朔之日晨前夜半入转度及分秒。
求次月定朔及弦望夜半入转度:因天正十一月定朔夜半入转度分,大月加三十二度六十九分一十七秒,小月加十九度三十二分二十九秒半,即各得次月定朔夜半入转度及分。各以朔、弦、望相距日数乘平行度分以加之,满转终度及秒即去之,如在中度以下者为在疾;以上者去之,余为入迟历,即各得次朔、弦、望定日晨前夜半入转度及分。(若以平行月度及分收之,即为定朔、弦、望入转日。)
求定朔弦望夜半定月:以定朔、弦、望夜半入转度分乘其度损益衰,以一万约之为分,百约之为秒,损益其度下迟疾度,为迟疾定度。乃以迟加疾减夜半平行月,为朔、弦、望夜半定月积度。以冬至加时黄道日度加而命之,即定朔、弦、望夜半月离所在宿次。(若有求晨昏月,以其日晨昏分乘其日月行定分,元法而一,所得为晨昏度;以加其夜半定月,即得朔、弦、望晨昏月度。)
求朔弦望定程:各以朔、弦、望定月相减,余为定程。(若求晨昏定程,则用晨昏定月相减,朔后用昏,望后用晨。)
求朔弦望转积度分:计四七日月行定分,以日衰加减之,为逐日月行定分;乃自所入日计之,为其程转积度分。(其四七日月行定分者,初日益迟一千二百一十,七日渐疾一千三百四十一,十四日损疾一千四百六十一,二十一日渐迟一千三百二十八,乃视其迟疾之极差而损益之,分以百为母。)
求每日月离宿次:各以其朔、弦、望定程与转积度相减,余为程差。以距后程日数除之,为日差。(定程多为益差,定程少为损差。)以日差加减月行定分。为每日月行定分;以每日月行定分累加定朔、弦、望夜半月在宿次,命之,即每日晨前夜半月离宿次。(如晨昏宿次,即得每日晨昏月度。)
步交会术
交度母:六百二十四万。
周天分:二十二亿七千九百二十万四百四十七。
朔差:九百九十万一千一百五十九。
朔差:一度、余三百六十六万一千一百五十九。
望差:空度、余四百九十五万五百七十九半。
半周天:一百八十二度。(余三百九十二万二百二十三半,约分六千二百八十二。)
 ... -->>
本章未完,点击下一页继续阅读